2,632 research outputs found

    The effect of movement variability on putting proficiency during the golf putting stroke

    Get PDF
    Movement variability has been considered important to execute an effective golf swing yet is comparatively unexplored regarding the golf putt. Movement variability could potentially be important considering the small margins of error between a successful and a missed putt. The aim of this study was to assess whether variability of body segment rotations influence putting performance (ball kinematic measures). Eight golfers (handicap range 0–10) performed a 3.2 m level putt wearing retro-reflective markers which were tracked using a three-dimensional motion analysis system sampling at 120 Hz. Ball roll kinematics were recorded using Quintic Ball Roll launch monitor. Movement (segment) variability was calculated based on a scalene ellipsoid volume concept and correlated with the coefficient of variation of ball kinematics. Statistical analysis showed no significant relationships between segment variability and putting proficiency. One significant relationship was identified between left forearm variability and horizontal launch angle, but this did not result in deficits in putting success. Results show that performance variability in the backswing and downswing is not related to putting proficiency or the majority of ball roll measures. Differing strategies may exist where certain golfers may have more fluid movement patterns thereby effectively utilising variability of movement. Therefore, golf instructors should consider movement variability when coaching the golf putt

    Reliability of an experimental method to analyse the impact point on a golf ball during putting

    Get PDF
    This study aimed to examine the reliability of an experimental method identifying the location of the impact point on a golf ball during putting. Forty trials were completed using a mechanical putting robot set to reproduce a putt of 3.2 m, with four different putter-ball combinations. After locating the centre of the dimple pattern (centroid) the following variables were tested; distance of the impact point from the centroid, angle of the impact point from the centroid and distance of the impact point from the centroid derived from the X, Y coordinates. Good to excellent reliability was demonstrated in all impact variables reflected in very strong relative (ICC = 0.98–1.00) and absolute reliability (SEM% = 0.9–4.3%). The highest SEM% observed was 7% for the angle of the impact point from the centroid. In conclusion, the experimental method was shown to be reliable at locating the centroid location of a golf ball, therefore allowing for the identification of the point of impact with the putter head and is suitable for use in subsequent studies

    Allan Variance Analysis as Useful Tool to Determine Noise in Various Single-Molecule Setups

    Full text link
    One limitation on the performance of optical traps is the noise inherently present in every setup. Therefore, it is the desire of most experimentalists to minimize and possibly eliminate noise from their optical trapping experiments. A step in this direction is to quantify the actual noise in the system and to evaluate how much each particular component contributes to the overall noise. For this purpose we present Allan variance analysis as a straightforward method. In particular, it allows for judging the impact of drift which gives rise to low-frequency noise, which is extremely difficult to pinpoint by other methods. We show how to determine the optimal sampling time for calibration, the optimal number of data points for a desired experiment, and we provide measurements of how much accuracy is gained by acquiring additional data points. Allan variances of both micrometer-sized spheres and asymmetric nanometer-sized rods are considered.Comment: 14 pages, 6 figures, presented at SPIE Optics+Photonics 2009 in San Diego, CA, US

    The integration of on-line monitoring and reconfiguration functions using IEEE1149.4 into a safety critical automotive electronic control unit.

    Get PDF
    This paper presents an innovative application of IEEE 1149.4 and the integrated diagnostic reconfiguration (IDR) as tools for the implementation of an embedded test solution for an automotive electronic control unit, implemented as a fully integrated mixed signal system. The paper describes how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes

    REGIONAL COST SHARE NECESSARY FOR RANCHER PARTICIPATION IN BRUSH CONTROL

    Get PDF
    Large-scale brush-control programs are being proposed in Texas to increase off-site water yields. Biophysical and economic simulation models are combined to estimate the effects of brush control on representative ranches in four ecological regions of the Edwards Plateau area of Texas. Net present values of representative ranches in three of four regions decrease with brush control. Cost shares necessary for ranches from the three regions to break even range from 7% to 31% of total brush-control costs. Any large-scale brush-control program will therefore require a substantial investment by the state of Texas.Agribusiness,

    The effect of dimple error on the horizontal launch angle and side spin of the golf ball during putting

    Get PDF
    This study aimed to examine the effect of the impact point on the golf ball on the horizontal launch angle and side spin during putting with a mechanical putting arm and human participants. Putts of 3.2 m were completed with a mechanical putting arm (four putter-ball combinations, total of 160 trials) and human participants (two putter-ball combinations, total of 337 trials). The centre of the dimple pattern (centroid) was located and the following variables were measured: distance and angle of the impact point from the centroid and surface area of the impact zone. Multiple regression analysis was conducted to identify whether impact variables had significant associations with ball roll variables, horizontal launch angle and side spin. Significant associations were identified between impact variables and horizontal launch angle with the mechanical putting arm but this was not replicated with human participants. The variability caused by “dimple error” was minimal with the mechanical putting arm and not evident with human participants. Differences between the mechanical putting arm and human participants may be due to the way impulse is imparted on the ball. Therefore it is concluded that variability of impact point on the golf ball has a minimal effect on putting performanc

    Superparticle Method for Simulating Collisions

    Full text link
    For problems in astrophysics, planetary science and beyond, numerical simulations are often limited to simulating fewer particles than in the real system. To model collisions, the simulated particles (aka superparticles) need to be inflated to represent a collectively large collisional cross section of real particles. Here we develop a superparticle-based method that replicates the kinetic energy loss during real-world collisions, implement it in an NN-body code and test it. The tests provide interesting insights into dynamics of self gravitating collisional systems. They show how particle systems evolve over several free fall timescales to form central concentrations and equilibrated outer shells. The superparticle method can be extended to account for the accretional growth of objects during inelastic mergers.Comment: accepted in Ap
    • …
    corecore